Die Reise unserer Gene
Ein Knochen auf dem Schreibtisch
Die Fingerkuppe, die ich eines Morgens im Winter des Jahres 2009 auf meinem Schreibtisch vorfand, war nur noch der klägliche Rest eines Fingers. Der Nagel fehlte, die Haut sowieso, eigentlich war es nur die Spitze eines oberen Fingerknochens, nicht größer als ein Kirschkern. Sie gehörte, wie ich später herausfand, einem fünf- bis siebenjährigen Mädchen. Die Kuppe lag in einem handelsüblichen wattierten Umschlag und kam von weit her, aus Nowosibirsk. Nicht jeder ist erfreut, wenn er noch vor dem Morgenkaffee abgetrennte Körperteile aus Russland auf seinem Schreibtisch findet. Doch ich war es.
Fast ein Jahrzehnt zuvor, im Jahr 2000, hatte der amerikanische Präsident Bill Clinton im Weißen Haus eine Pressekonferenz gegeben, in der, nach zehnjähriger Arbeit und Milliarden an Investitionen in das »Humangenomprojekt«, die Entschlüsselung des menschlichen Genoms verkündet wurde. DNA war damals auf einmal überall Thema, die FAZ räumte ihr Feuilleton frei, um Sequenzen des menschlichen Genoms abzudrucken - eine endlose Reihe der Basen A, T, C und G, aus denen die DNA besteht. Vielen wurde in dieser Zeit schlagartig bewusst, welche Bedeutung der Genetik künftig zukommen würde. Immerhin bestand die Aussicht, in der DNA des Menschen wie in einem Bauplan zu lesen.
2009 war die Wissenschaft diesem Ziel schon sehr viel näher. Ich arbeitete in dieser Zeit als Post-Doktorand am Leipziger Max-Planck-Institut für Evolutionäre Anthropologie, auch bekannt unter dem geradezu sinnbildlichen Kürzel MPI-EVA. Das Institut war damals schon die weltweit erste Adresse für Wissenschaftlerinnen und Wissenschaftler, die mithilfe hocheffizienter Technik die DNA aus alten Knochen sequenzieren wollten. Vorangegangen waren jahrzehntelange Kraftanstrengungen der genetischen Forschung, die es erst möglich machten, dass mithilfe des Fingerknochens auf meinem Schreibtisch die Entstehungsgeschichte der Menschheit ein wenig umgeschrieben wurde. Denn bei dem Fund aus Sibirien handelte es sich um die 70 000 Jahre alten Überreste eines Mädchens, das einer bisher unbekannten Urmenschenform angehörte. Das verrieten ein paar Milligramm Knochenstaub - und eine hochkomplexe Sequenziermaschine. Nur wenige Jahre zuvor wäre es technisch undenkbar gewesen, einer winzigen Fingerkuppe zu entlocken, von wem sie stammte. Und nicht nur das zeigte uns der Knochensplitter. Wir erfuhren von ihm auch, was das Mädchen mit uns heute lebenden Menschen verband - und wie es sich von uns unterschied.
Eine Billion am Tag
Die DNA als Bauplan des Lebens ist schon seit über hundert Jahren bekannt. 1953 entdeckten James Watson und Francis Crick nach Vorarbeit von Rosalind Franklin ihre Struktur, wofür beide neun Jahre später den Nobelpreis für Medizin bekamen (Franklin war zu diesem Zeitpunkt schon verstorben, im jungen Alter von 37 Jahren). Die Medizin war es auch, die seitdem die DNA-Forschung antrieb und schließlich das Humangenomprojekt einläutete.
Ein Meilenstein, um DNA zu entschlüsseln, sie also lesen zu können, war in den Achtzigerjahren die Entwicklung der Polymerase-Kettenreaktion.1 Dieses Verfahren ist eine der Grundlagen heutiger Sequenziermaschinen, die die Abfolge der Basen innerhalb eines DNA-Moleküls auslesen. Seit der Jahrtausendwende entwickelten sich die Sequenziermaschinen rasant weiter. Jeder, der sich an seinen alten Commodore 64 erinnert und heute ein Smartphone nutzt, kann sich in Ansätzen vorstellen, wie rasch die Technik auch in der Genetik voranschritt.
Ein paar Zahlen lassen erahnen, in welchen Dimensionen wir uns bewegen, wenn es um die DNA-Entschlüsselung geht: Das menschliche Genom besteht a