text.skipToContent text.skipToNavigation

Atmospheric Radiation A Primer with Illustrative Solutions von Coakley Jim (eBook)

  • Erscheinungsdatum: 26.06.2014
  • Verlag: Wiley-VCH
eBook (ePUB)
54,99 €
inkl. gesetzl. MwSt.
Sofort per Download lieferbar

Online verfügbar

Atmospheric Radiation

A first-look at radiative transfer in planetary atmospheres with a particular focus on the Earth's atmosphere and climate. The textbook covers the basics of the radiative transfer of sunlight, treating absorption and scattering, and the transfer of the thermal infrared appropriate for local thermodynamic equilibrium, absorption and emission. The examples included show how the solutions of the radiative transfer equation are used in remote sensing to probe the thermal structure and composition of planetary atmospheres. This motivates students by leading them to a better understanding of and appreciation for the computer-generated numerical results. Aimed at upper-division undergraduates and beginning graduate students in physics and atmospheric sciences, the book is designed to cover the essence of the material in a 10-week course, while the material in the optional sections will facilitate its use at the more leisurely pace and in-depth focus of a semester course. Professor James Coakley received his degrees in Physics: B.S. (1968) UCLA, and MA (1970) and PhD (1972) Berkeley. He entered the atmospheric sciences in 1972 as a Postdoctoral Fellow in the Advanced Study Program at the National Center for Atmospheric Research (NCAR) and stayed at NCAR in various staff scientist positions until moving to Oregon State University in 1988 where he is currently a Professor of Atmospheric Sciences in the College of Oceanic and Atmospheric Sciences. His research focuses on the problem of climate change and in particular on the remote sensing of aerosol and cloud properties from satellites, and the effects of aerosols and clouds on the Earth's energy budget and climate. Dr. Coakley is a Fellow of the American Meteorological Society and the American Association for the Advancement of Science. He has served on editorial advisory board for Tellus, as an Associate Editor for the Journal of Geophysical Research, and as Editor for the Journal of Climate. He has also served on various panels for the National Research Council and as a member for two of the Council's standing committees: Meteorological Analysis, Prediction, and Research and Climate Research. Professor Ping Yang received the B.S. (theoretical physics) and M.S. (atmospheric physics) degrees from Lanzhou, China, in 1985 and 1988, respectively, and the Ph.D. degree in meteorology from the University of Utah, Salt Lake City, USA, in 1995. He is currently a professor and the holder of the David Bullock Harris Chair in Geosciences, the Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA. His research interests cover the areas of remote sensing and radiative transfer. He has been actively conducting research in the modeling of the optical and radiative properties of clouds and aerosols, in particular, cirrus clouds, and their applications to space-borne and ground-based remote sensing. He has co-authored more than 160 peer-reviewed publications. He received a best paper award from the Climate and Radiation Branch, NASA Goddard Space Center in 2000, the U.S. National Science Foundation CAREER award in 2003, and the Dean's Distinguished Achievement Award for Faculty Research, College of Geosciences, Texas A&M University in 2004. He is a member of the MODIS Science Team and. He currently serves as an associate editor for the Journal of Atmospheric Sciences, the Journal of Quantitative Spectroscopy & Radiative Transfer, and the Journal of Applied Meteorology and Climatology.


Weiterlesen weniger lesen

Atmospheric Radiation


This book is an introduction to atmospheric radiation. The focus is on radiative transfer in planetary atmospheres with particular emphasis on the Earth's atmosphere, the Earth's energy budget, and the role that radiation plays in climate sensitivity and climate change. The material is presented at the level expected of entering graduate students in the atmospheric sciences and most upper division undergraduates in the physical sciences. Students will need to have studied physics with calculus and methods for solving linear differential equations.

The goal of the book is to provide students with relatively simple physically based methods for calculating radiances and radiative fluxes at the Earth's surface and the top of the atmosphere and radiative heating rates within the atmosphere. It does so by following the approaches of two classical works: Rodgers and Walshaw [1], a treatment of infrared radiative transfer in the atmosphere, and Lacis and Hansen [2], a treatment of the transfer of solar radiation. Although more sophisticated treatments have appeared, these classical treatments embrace the physics of the problem. The difference in the modern and classical approaches is in the details with which scattering, absorption, and emission are treated and the numerical accuracy of the solutions to the radiative transfer equation.

The material presented in the book is intended to help students become familiar with relatively simple techniques that they can use to develop their intuition for the effects of scattering, absorption, and emission. A second goal is to alert students to the sensitivity of the Earth's climate to seemingly minor perturbations of the radiation budget. A third goal is to exercise a student's analytical skills. For the most part, the book's treatment is analytical. The use of large computer programs, while briefly described, is avoided. The emphasis is on helping students build an understanding that allows analytical manipulation rather than relying on computer exercises.

Problems at the end of each chapter are meant to be both interesting and instructive. They are intended to help students hone their understanding of the material covered in the chapter as well as in previous chapters. Some of these problems are rather simple but nonetheless helpful aids to learning; others will challenge students. The ordering of the problems is from the simple to the challenging. Occasionally, a problem will call for simple, straightforward numerical calculations that require the use of a spreadsheet or one of the widely used software programs for interactive computer analysis. These numerical exercises help students develop a sense of magnitudes for various processes.

This book grew from the "Class Notes" for a course on atmospheric radiation taught for more than 20 years at Oregon State University. Over the years, the notes evolved to better fit the needs of students and the time constraints of the 10-week quarter system. The book is not meant to be a reference book. Many fine references on atmospheric radiation already exist [3–8]. Teaching introductory courses from these references, however, has often proved difficult. Instructors are forced to select topics from what must seem to students as random pages from different sections of the books. Owing to time constraints, many sections of the books go untouched. In addition, some of the reference books are difficult for students to read. Some assume readers have far more advanced physical and mathematical knowledge and ability than have been acquired by many entering graduate students in the atmospheric sciences and upper division undergraduate students in the physical sciences. In fairness to the students, atmospheric radiation poses special challenges to those encountering the subject for the first time. New students often find bewildering the need for zenith angles, relative azimuth angles, sol

Weiterlesen weniger lesen