text.skipToContent text.skipToNavigation
background-image

Advances in K-means Clustering A Data Mining Thinking von Wu, Junjie (eBook)

  • Erscheinungsdatum: 09.07.2012
  • Verlag: Springer-Verlag
eBook (PDF)
107,09 €
inkl. gesetzl. MwSt.
Sofort per Download lieferbar

Online verfügbar

Advances in K-means Clustering

Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this 'old' algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the 'dangerous' uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the '2010 National Excellent Doctoral Dissertation Award', the highest honor for not more than 100 PhD theses per year in China.

Produktinformationen

    Format: PDF
    Kopierschutz: AdobeDRM
    Seitenzahl: 180
    Erscheinungsdatum: 09.07.2012
    Sprache: Englisch
    ISBN: 9783642298073
    Verlag: Springer-Verlag
    Größe: 4576kBytes
Weiterlesen weniger lesen

Kundenbewertungen